Technical Notes

Geometric Interpretation of the Function g(c/u) of Neutron Transport Theory

Perry A. Newman

NASA Langley Research Center Hampton, Virginia 23365

Robert L. Bowden

Department of Physics, Virginia Polytechnic Institute Blacksburg, Virginia 24061

> Received January 23, 1970 Revised April 3, 1970

In their classic monograph on neutron transport theory, Case et al. introduced the function $g(c,\mu)$,

$$g(c,\mu) = [(1 - c\mu \tanh^{-1} \mu)^2 + (\pi c\mu/2)^2]^{-1},$$
 (1)

and gave many of its properties. It is now well known² that this function is simply related to the normalization of the singular eigenfunctions introduced later by Case.3 analogous function is readily defined in time-dependent monoenergetic neutron-transport problems in plane geometry with isotropic scattering; however it also contains a complex transform variable. Bowden and Williams have shown that in such time-dependent problems the discrete eigenfunctions are not always present in the normal-mode expansion of the Laplace transform of the solution; that is, there exists a curve, C_s , in the s/c-plane (see Fig. 1) such that if s/c lies inside the curve ($s \in S_i$) discrete terms are present, whereas for s/c outside the curve ($s \in S_e$) there are no discrete terms. The curve C_s is given by

$$C_s = \left\{ s/c = \alpha' + i\beta' \middle| \alpha' = \frac{2\beta'}{\pi} \tanh^{-1} \frac{2\beta'}{\pi} \right\} \qquad (2)$$

We want to point out in this note that the function

$$\frac{1}{\alpha^2} g\left(\frac{1}{\alpha}, \mu\right) = \frac{c^2}{\Omega^+(\mu, s)\Omega^-(\mu, s)} \bigg|_{\beta \models 0}, \quad 0 \leq \mu \leq 1 \quad , \quad (3)$$

where $s/c = \alpha + i\beta$ and $\Omega^{\pm}(\mu, s)$ are the limiting values of the dispersion function

$$\Omega(z,s) = s - cz \tanh^{-1}(1/z) \tag{4}$$

on its branch cut in the z-plane, is the inverse of the square of the distance in the s/c-plane from the point $(\alpha,0)$ to the point $[\alpha'(\mu), \beta'(\mu)]$ which lies on the curve C_s .

The functions $|\Omega^{\pm}(\mu,s)/c|^2$ are easily found from Eq. (4) to be

$$\left| \frac{\Omega^{\pm}(\mu,s)}{c} \right|^2 = (\alpha - \mu \tanh^{-1} \mu)^2 + (\beta \pm \pi \mu/2)^2 \quad , \quad (5)$$

Office, Washington, D.C. (1953).

²K. M. CASE and P. F. ZWEIFEL, Linear Transport Theory, Addison-Wesley Pub. Co., Reading, Massachusetts (1967).

³K. M. CASE, Ann. Phys., 9, 1 (1960).

$$|\beta'(\mu)| = \pi \mu/2$$
, $\alpha'(\mu) = \mu \tanh^{-1} \mu$, $0 \le \mu \le 1$. (6)

while the parametric form of Eq. (2) is $|\beta'(\mu)| = \pi \mu/2 \ , \quad \alpha'(\mu) = \mu + \alpha^{-1}$ Thus $|\Omega^{\pm}(\mu)| = \pi \mu/2$ s/c-plane from the point (α,β) to the points $[\alpha'(\mu), \mp |\beta'(\mu)|]$ which lie on the curve C_s , in the lower and upper halfplanes, respectively. When $\beta = 0$, $\Omega^{+}(\mu, s)$ and $\Omega^{-}(\mu, s)$ are complex conjugates so that Eq. (5) reduces to Eq. (3) and the stated result follows.

Fig. 1. Location of the curve C_s in the complex s/c-plane, $s/c = \alpha + i\beta$. Several values of the parameter μ are given in parentheses for C_s in the upper half-plane. The function $\nu_0(s)$ is the solution of $\Omega(\nu_0, s) = 0$ for which $\text{Re}(\nu_0) > 0$ when Re(s/c) > 1. Some values of $\nu_0(s)$ are plotted in the complex s-plane in Fig. 1 of Ref. 5 (Fig. 7.1 of Ref. 2).

Case et al. show, for example, that $g(1/\alpha,\mu)|_{\max}$ occurs at $\mu = 0$ for $\alpha < \pi^2/8$, whereas for $\alpha > \pi^2/8$ it occurs for μ between 0 and 1. For α very large, they show that g_{max} $4\alpha^2/\pi^2$. The present geometric interpretation is seen to be consistent with these characteristics. The radius of curvature of the curve C_s given by Eq. (2) is $\pi^2/8$ at (α', β') = (0,0) as indicated by the dashed circle on Fig. 1. For α' very large, $\beta' \rightarrow \pi/2$ so that the minimum squared distance from $(\alpha,0)$ to (α',β') approaches $\pi^2/4$, in agreement with Eq. (3) and $g_{\text{max}} \rightarrow 4\alpha^2/\pi^2$.

¹K. M. CASE, F. deHOFFMAN, and G. PLACZEK, Introduction to the Theory of Neutron Diffusion, U.S. Government Printing

AR. L. BOWDEN and C. D. WILLIAMS, J. Math. Phys., 5, 1527 (1964).

⁵I. KUŠČER and P. F. ZWEIFEL, J. Math. Phys., 6, 1125 (1965).